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Chaotic Mixing in Charged-Particle Beams and Galaxies
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Self-interacting, nonequilibrium, very-many-body systems such as elliptical galaxies and charged-
particle beams seem generically to exhibit rapid evolution to a quasi-equilibrium state. Such systems
comprise some 1010−12 particles. The associated collisional relaxation time of elliptical galaxies is
∼ 1015−16 years, several orders of magnitude larger than the age of the universe. For a nonrelativistic
charged-particle beam it is ∼ 1− 10 µs, i.e., “1-10 km”, typically much longer than, e.g., the length
of a linac. Yet, elliptical galaxies appear to be “relaxed” to a smooth density distribution, and
charged-particle beams have likewise been seen to “relax” to a smooth density distribution, and also
to equipartition in a few meters, depending on details of the space charge. How so? This paper
focuses on the behavior of the orbits comprising the system and how these orbits mix through their
accessible phase space. Time scales for relaxation to quasi-equilibria are estimated; the estimates
are in reasonable agreement with the true values computed in numerical simulations and seen in
(the few) beam experiments done to date.

I. INTRODUCTION

Rapid irreversible dynamics is a practical concern in producing high-brightness charged-particle beams. Time
scales of irreversible processes place constraints on methods for compensating against degradation of beam
quality caused by, for example, space charge or coherent synchrotron radiation. Compensation must be fast
compared to active irreversible processes, and this affects the choice and configuration of the associated hardware.

A beam bunch with space charge comprises anN -body system with typically 3N degrees of freedom. Orbits in
the nonlinear space-charge force may be chaotic, especially in a nonequilibrium beam. Through phase mixing, an
initially localized ensemble of chaotic orbits will grow exponentially and eventually diffuse through its accessible
phase space, reaching an invariant distribution. This is what is meant by “chaotic mixing” [1]. The process is
irreversible in the sense that infinitesimal fine-tuning is needed to reassemble the initial conditions. It is also
distinctly different from phase mixing of regular orbits, a process that winds an initially localized ensemble
into a filament over a comparatively narrow region of phase space, and that is in principle reversible. Whereas
chaotic mixing proceeds exponentially over a well-defined time scale and causes global, macroscopic changes
in the system, phase mixing carries an algebraic time dependence, proceeds on a time scale depending on the
distribution of orbital frequencies across the ensemble, and acts only over a portion of the phase space.

Chaotic mixing may or may not be rapid. For example, simulations of large self-gravitating N -body systems
in which the smoothed density is constant over a stationary ellipsoidal volume show that the orbits, though
they are chaotic, behave for very long times as if they were regular [2]. These simulations, however, also reveal
that adding a density cusp and/or inserting a massive black hole at the centroid can greatly accelerate chaotic
mixing, driving it to completion within a few orbital periods. The process tends to make the distribution of
stars more isotropic [3], reminiscent of equipartitioning in beams. In short, structure in the density distribution
of a self-gravitating system can lead to rapid chaotic mixing by increasing the degree of chaoticity of the orbits.

By analogy, one might conjecture that structure in the density distribution of a self-interacting beam can
likewise lead to rapid chaotic mixing. One example is the University of Maryland five-beamlet experiment
that showed presumably irreversible dissipation of the beamlets after a few space-charge-depressed betatron
periods [4]. Simulations of the experiments revealed a substantial fraction of globally chaotic orbits [5], and
chaotic mixing thereby presents itself as a possible mechanism. In any case, ascertaining conditions that lead
to rapid chaotic mixing in beams is an undertaking of practical importance.
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II. THEORY VS. NUMERICAL EXPERIMENTS

The past few years have seen development of a geometric method proposed by M. Pettini to quantify chaotic
instability in Hamiltonian systems with many degrees of freedom. The central idea is to describe the dynamics
in terms of average curvature properties of the manifold in which the particle orbits are geodesics. The method
hinges on the following assumptions and approximations, which are discussed thoroughly in Ref. [6]: (1) a generic
geodesic is chaotic; (2) the manifold’s effective curvature is locally deformed but otherwise constant; (3) the
effective curvature reflects a gaussian stochastic process; and (4) long-time-averaged properties of the curvature
are calculable as phase-space averages over an invariant measure, specifically, the microcanonical ensemble. The
gaussian process is the zeroth-order term in a cumulant expansion of the actual stochastic process; assumption
(3) is that the zeroth-order term suffices. The end result relates chaotic instability to the geometric properties
of the manifold defined by the long-time-averaged orbits. Though the assumptions and approximations lack
universal validity and are difficult to prove rigorously for a given system, they nonetheless would seem to offer
a reasonable basis for identifying conditions that can produce rapid chaotic mixing [7].

With the assumptions and approximations, Pettini and others [6] derive an expression for the largest Lyapunov
exponent χ (which is a measure of the mixing rate [7]) in terms of the curvature and its standard deviation
averaged over the microcanonical ensemble. The idea is that, as t → ∞, chaotic orbits of total energy E mix
through the configuration space toward an invariant measure, taken per assumption (4) to be the microcanonical
ensemble δ(H − E), over which time averages become equivalent to phase-space averages. Specifically, for an
arbitrary function A(q), the averaging process is

〈A〉 ≡ lim
t→∞
〈A〉t =

∫
dq
∫
dq̇ A(q)δ[H(q, q̇) −E]∫

dq
∫
dq̇ δ[H(q, q̇)− E]

. (1)
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in which ρ ≡ σ/κ, a quantity that measures the ratio of the average curvature radius to the length scale of
fluctuations, with
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, (3)

in which ∆ denotes the Laplacian ∂i∂i.
The geometric quantities derive from the 6N -dimensional microcanonical ensemble. Anticipating that granu-

larity takes a long time to affect mixing, and wishing to identify conditions for rapid mixing, we now consider the
influence of the 3-dimensional coarse-grained space-charge potential Vs on a generic chaotic orbit. We presume
the assumptions and approximations carry over to the coarse-grained system; when they do not, chaotic mixing
will normally be too slow to be of concern. We take the external focusing potential Vf to be quadratic in the
coordinates x comoving with the bunch, i .e., Vf (x) = (ω2

xx
2+ω2

yy
2+ω2

zz
2)/2; the total potential is V = Vf+Vs.

Per Eq. (3) and Poisson’s equation the quantities κ and σ are determined from ∇2V = ω2
f − ω2

p(x), in which
ω2
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x + ω2
y + ω2

z , ω2
p(x) = n(x)e2/(εom), n(x) is the (smoothed) particle density, e and m are the single-

particle charge and mass, respectively, and εo is the permittivity of free space. With ωp0 ≡ ωp(0), the results
may be expressed conveniently in terms of the space-charge-depressed focusing strength ω2

s = ω2
f −ω2

p0 and the
normalized particle density ν(x) = n(x)/n(0) as κ = (ω2
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Inserting these results into Eq. (2) gives the associated time scale, tm ≡ 1/χ, for irreversible chaotic mixing.
When the standard deviation of the density distribution is large, as can be the case when substructure is present,
ρ will be appreciable, and in turn Eq. (2) makes clear that tm will be a few space-charge-depressed betatron pe-
riods. This is consistent with, e.g., the aforementioned University of Maryland experiment showing irreversible
dissolution of both matched and mismatched 5-beamlet configurations over a few depressed betatron periods [4].

The aforementioned studies of galactic dynamics permit a more precise means of assessing the theory. Com-
prehensive simulations of chaotic mixing in galaxies consisting of a homogeneous ellipsoid with a massive black
hole at its centroid have recently been done [8]. Comparison of these results against those of the theory reveal
that the analytic results agree closely with the numerical results, particularly for intermediate-to-small values of
the black-hole mass [7]. The agreement suggests that the 6-dimensional phase space governed by the potential
exhibits global chaos and associated rapid irreversible mixing over the bulk of the parameter space. Uncertainty
in the calculated time scale seems to be principally associated with uncertainty in the autocorrelation time; it
is comparatively insensitive to the choice of the invariant measure that weights the statistical averages.
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Preliminary results from a numerical study in progress indicate that chaotic mixing is associated with the
equipartitioning of anisotropic charged-particle beams [9]. The study is based on the same methodology as
that of the galactic studies, viz., following the evolution of initially localized ensembles, looking for exponential
divergence of orbits in the phase space, and deciphering the time scale for the divergence. The results suggest
that anisotropy establishes a significant population of chaotic orbits, these orbits diverge exponentially, and the
divergence saturates on a global scale as the orbits fill their accessible phase space.

III. SYNOPSIS

To summarize, investigations to date point to the presence of chaotic orbits in nonequilibrium systems com-
prising a large number of mutually interacting particles. The chaotic behavior arises generically from a para-
metric instability that can be modeled by a stochastic-oscillator equation. Calculated time scales are normally
reasonably close to those seen in numerical experiments and are consistent with (the few) existing laboratory
experiments concerning charged-particle beams. However, the theoretical treatment provides no information as
to what criteria are necessary and sufficient to establish a preponderance of globally chaotic orbits; it merely
hypothesizes their existence. Likewise, it fails to account for “sticky” chaotic-orbit segments that, when present,
tend to slow the mixing. Real systems may, however, mitigate this caveat. For example, external noise is known
to add greatly to the efficiency of chaotic mixing by overcoming stickiness. Localized irregularities that have
been coarse-grained away may likewise increase the chaoticity of the orbits. The lower limit corresponds to
graininess manifesting itself in binary particle interactions that, in both regular and chaotic smoothed poten-
tials, appears to constitute a source of noise. Graininess establishes diffusion of an orbit from the trajectory
it would have in the smooth potential. The diffusion proceeds as a power law in time for regular orbits, but
exponentially for chaotic orbits [10].

When chaotic mixing is active, structure in the density distribution determines how rapidly it progresses.
Production of high-brightness beams may lead to transient, localized density peaks, as has been seen, e.g.,
during bunch compression and in merging multiple beamlets. Thus, an accelerator designer who cannot know a
priori the detailed bunch structure will want to ensure that emittance compensation is completed within roughly
a plasma period to be confident that irreversible mixing will not spoil the compensation. This criterion translates
into permissible beamline locations and maximum lengths that the associated hardware can occupy [11].

An interesting possibility is to design laboratory experiments involving beams with an eye toward applications
to other areas, such as galaxies for which direct experimentation is obviously impossible, or large N-body systems
of interacting particles in general. We are in the process of designing such experiments to be conducted with
the University of Maryland Electron Ring.
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